If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-9x^2+156x+480=0
a = -9; b = 156; c = +480;
Δ = b2-4ac
Δ = 1562-4·(-9)·480
Δ = 41616
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{41616}=204$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(156)-204}{2*-9}=\frac{-360}{-18} =+20 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(156)+204}{2*-9}=\frac{48}{-18} =-2+2/3 $
| 16x+6=-3 | | 1=-5b95 | | 10(0.4+0.5g)=4g10, | | 4g+5{g-3}=({g-5} | | -12=15y | | 8x-7=15=19x | | x+8/6=8 | | 10=x/2-2 | | -1+8(-3-7n)=199 | | 3-3(a-2)=9+a | | 9=14x+2 | | 10x+11=8x+35 | | -4(-3+s)-10=22 | | 5a-12=3a | | -9x-2=-2(x+8) | | 6(8+5p)=138 | | 9x-11=5x+53 | | -3=k-5/3 | | 3(-8x+7)=-12(2x-2) | | 3x1=9+x | | 12x-13=7x+82 | | 16x+13=7x+184 | | 4v2-12v+5=0 | | 9=8+b/9 | | 12x+12=5x+47 | | 16x+8=7x+179 | | 124=-10n+4 | | -6(k-7)+(k+5)=73 | | -56=-2+6n | | 16x+8=7x179 | | 51000000=x*(1/6) | | 5+5(5+2v)=100 |